ELLIPSOID-SIMPLEX HYBRID FOR HYPERSPECTRAL ANOMALY DETECTION

James Theiler

Space and Remote Sensing Sciences, Los Alamos National Laboratory; Los Alamos, NM 87544, USA

ABSTRACT

The problem of anomaly detection in hyperspectral im-
agery is expressed in terms of a minimal volume set in a high-
dimensional space that encloses the bulk of the data samples.
The venerable RX algorithm employs an ellipsoid for this vol-
ume, but endmember methods can be used to create a simplex
volume. This paper considers a hybrid ellipsoid-simplex vol-
ume and characterizes its performance on hyperspectral im-
agery by computing a plot of volume versus false alarm rate.
This plot provides a generic measure of quality (smaller vol-
umes are better) without requiring the identification of spe-
cific anomalies in the data.

Index Terms— hyperspectral imagery, anomaly detec-
tion, ellipsoid, simplex, endmember, volume, false alarm rate

1. INTRODUCTION

Anomaly detection is a kind of target detection problem in
which the target is unknown. It’s like looking for needles in
a haystack, without knowing what a needle is. Despite the
apparent philosophical conundrum inherent in the anomaly
detection problem [1], there is nonetheless a practical utility
in identifying those data elements that are unusual with re-
spect to the others. This practical need has led to a variety
of algorithms (see Refs. [2, 3] for recent surveys), including
mathematically rigorous machine learning approaches [4, 5].

Let x € R? represent a data element (such as a pixel in
a d-channel hyperspectral image). The anomaly detector is a
scalar function .A(x), which corresponds to the “anomalous-
ness” of pixel x. When A(x) > 7 for some threshold 7, then
x is declared an anomalous pixel. Given a labeled data set
of anomalous and non-anomalous pixels, we can characterize
the performance of .A(x) with a receiver-operator character-
istic (ROC) curve that compares false alarm rate (fraction of
non-anomalous' pixels for which A(x) > 7) to detection rate
(fraction of anomalous pixels with A4(x) > 1), over a range
of values of 1. This is classic target detection methodology,
but anomalies are unusual targets.

A representative and statistically meaningful set of anoma-
lous pixels is not generally available, so detection rate is not
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! Another word for this is “normal,” but that word often connotes Gaussian
distributions, and the aim here is to be more general than that.

readily measureable. A solution is to posit a distribution for
anomalous pixels. To reflect the fact that we don’t really
know what anomalies are, that distribution should be broad
and uninformative; a natural choice is a uniform distribution
over a volume extends well beyond the non-anomalous data. >
The detection rate is then the fraction of that volume for
which A(x) > 1. More measurable is the volume for which
A(x) < n. Without making a fuss over what the constant
multiplier is, it is clear that this volume is proportional to
the missed detection rate. This motivates the plotting of vol-
ume versus false alarm rate to characterize the performance
of an anomaly detector. The best anomaly detectors will be
minimal volume sets that enclose most of the data.

2. MODELS FOR THE DISTRIBUTION OF THE
(NON-ANOMALOUS) BACKGROUND

2.1. Ellipsoidal contours

One of the simplest and most useful models for the distribu-
tion of hyperspectral pixels is a multivariate Gaussian. Here,

X) = ;QX —17'2 X
PO = e |-yt 0

r(x) = [(x = 0)W (x - )] )
is the Mahalanobis distance from the centroid. Traditionally,
one obtains the centroid vector ;o and the covariance matrix
W from the first and second moments of the data, but variants
have been suggested to accomodate estimation error arising
either from the limited number of data samples or from devi-
ations from the assumption of Gaussianity.

The contours of constant P(x) will be ellipsoids centered
at u, and an anomaly detector that is fit to a Gaussian (or
any other elliptically contoured distribution [8]) will have the
form

where

Ax) =r(x) = [x— )W lix-w]"*. @)

The volume enclosed by the d-dimensional ellipsoid is a
function of the radius r:

d/2 1/2
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21t is possible to extend the uniform distribution over all of Rd; in this
limit, it is not strictly a distribution, but is a measure [5].
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Fig. 1. Coverage plot shows the volume of a simplex or ellipsoid necessary to cover a fraction 1 — « of the data, where «
corresponds to the false alarm rate (i.e., the fraction of pixels that are outside the volume). Models are fit to half of the data, and
the volume-vs-« curves are computed on the other half. A smaller volume at a given « indicates a better model. The curves
shown are for the 126-channel visible and near-infrared “blind test” radiance data [6], with dimension reduced using principal
components analysis. It is observed for lower dimensions d that the simplex method (in this case, the Max-D [7] algorithm was
used) produces better results at low false alarm rates (which is the regime of most interest in an anomaly detection scenario),

but that advantage begins to fail at larger dimensions.

Having provided a way, in Eq. (2), to compute radius r
for each point x in a dataset; and having an expression, in
Eq. (4), for volume as a function of r, we can produce the
coverage plots that were suggeted in Ref. [9]. For a given
threshold radius, the false alarm rate is the fraction of the data
for which r is larger than the threshold. As we sweep over
threshold values, we can plot volume versus false alarm rate.
The smaller the volume (corresponding to a smaller missed
detection rate), the better the performance. These coverage
curves are shown in Fig. 1; the solid lines are for ellipsoids.

2.2. Simplicial contours

A popular and often effective model for hyperspectral data is
a k-dimensional simplex, defined by a set of k 4+ 1 vertices
(called “endmembers”) in the d-dimensional space [10]. The
model is motivated by the notion that pixels in the image are
convex linear combinations of a relatively small number of
distinct materials whose spectra are realized in the endmem-
bers.

Let E € R (#+1) be the matrix whose columns are the
k 4+ 1 endmembers

E:[eo,el,...,ek] (5)
where e; € R? is the ith endmember. We presume that end-
members span the k& dimensional space (none of the endmem-
bers can be written as linear combinations of the others).

A point x is in the subspace of the simplex if Fa = x for
a vector a (of “abundances”) which satisfies the sum-to-one
rule; ie., 17a = 1, where 1 € R¥*1 is a vector of all 1’s.

That is: "
VIR ®

If the abundances are non-negative (a >~ 0), then x is in the
interior of the simplex.

Using this simplex as a starting point, we will generate a
family of nested simplices, and use them for anomaly detec-
tion in the same way that the nested ellipsoids were used for
anomaly detection in the previous subsection. Define

ei(r) = (1 —r)e+re;, @)

where € is the centroid of the endmembers. Then for any
r, we have k + 1 vertices e;(r). Here r plays the role of a
scalar-valued radius; when r» = 0, then the simplex contracts
to a point, and when r = 1, the original simplex is recovered.
In general, as r increases, a larger simplex is obtained. (See
Fig.2.)

Further, in terms of these new endmembers, e;(r), we can
write? the abundances a(r) associated with the point x as

a(r)z%[a—i—(]:;i) 1] ®)

where a is the solution when » = 1. The point x is inside
a simplex of radius r if a(r) = 0, or equivalently, if a >
(1—7)/(k+1). The radius of a point x is therefore given by

r(x) =1— (k + 1)min(a), 9)

where a solves Eq. (6). Just as Mahalanobis radius provides
a measure of anomalousness for the ellipsoidal contours, we
can use the simplex radius as a measure of anomalousness for
the simplex contours: A(x) = r(x).

To compute volume, choose one of the endmembers, say
e (it will not matter which endmember is chosen), as a ref-
erence point. Write the reduced d x k matrix as differences
with respect to this reference:

~

E =le1 —ep, e —e€p,...,e, — €. (10)

3This is a straightforward, though nontrivial, derivation.



Fig. 2. Simplex delineated by three endmembers: e, e;, and
e,. The centroid of the simplex is €. The “radius” associated
with a point x in the subspace of the simplex is the smallest
r such that x is still inside the simplex given by eo(r), e1(r),
and eo(r), where e;(r) = (1 — r)e + re;.

When d = k, then Eis square, and its determinant is related
to the volume of the simplAex.ABut for d > k, we can create
a full rank square matrix E7E € R*** and use the square
root of its determinant. In particular, we have

‘/;implex = |ETE|1/2/k' (1 1)
When using e;(r) as endmembers, then it is straightforward
to show that A

[ETE[V?
—_— .

V(r)= o

12)

Although simplicial contours can exhibit improved anomaly

detection performance (ie, more coverage with less volume),
these improvements often fade at higher dimension. See
Fig. 1; the dashed lines are for simplex-based anomaly de-
tectors. For a hyperspectral image with, say, 126 channels,
one would need 127 endmembers to describe the data. Thus,
in addition to being computationally expensive, the simplex
models appear ineffective at such high dimensions.

Although the simplex was motivated in terms of endmem-
bers, any choice of simplex will work. In fact, this analysis
provides an alternative measure of goodness for fitting a sim-
plex to data: rather than qualitatively assess how accurately
the e; match “real” spectra, one can quantitatively compute
simplex volume versus false alarm rate.

2.3. Ellipsoid-simplex hybrid

While hyperspectral data is not typically Gaussian, there is
a sense (e.g., see Refs. [11, 12, 13]) that it can be Gaussian
in “some directions,” particularly the directions with lower
variance. This intuition suggests a hybrid model for charac-
terizing hyperspectral data: simplex-like in the large-variance
directions and ellipsoid-like in the low-variance directions.
We begin with a k-dimensional simplex, defined by & + 1
endmembers. This simplex spans a k-dimensional subspace
of the d dimensional hyperspectral data, and we will use that
to express the d dimensional pixels x as the sum of a k-
dimensional component and a d — k£ dimensional component.
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Fig. 3. Coverage plot for the ellipsoid-simplex hybrid, where
k of the components are from the simplex and the remaining
d — k are the ellipsoid. While the pure ellipsoid does a better
job of modeling the “core” of the data distribution, the periph-
ery is better fit by the hybrid. At this high dimension, the pure
simplex requires a huge volume to cover most of the data.

That is,
(13)

where x g is in the affine subspace of the simplex, and x g is
the residual. Here, xg is modeled by a k-dimensional sim-
plex, and xg is modeled by a d — k dimensional Gaussian.

Specifically, in terms of E € R** defined in Eq. (10),
we can write xg = eg + EE#(x — eg), where E# € RF*4
is the pseudo-inverse of E. Then, xp = x —xg = (I —
EE#)(x — eg).

For a given x, we then compute two distinct radii: r p(x)
is given by Eq. (2) applied to xg; and rg(x) is given by
Eq. (9) applied to xg. Informally speaking, rr and rg in-
dicate two qualitatively different senses of anomalousness: a
small 7 and large s indicates an “in-plane” anomaly that is
in the main subspace of the data but on the far outskirts of it;
a small rg and a large rg is an “out-of-plane” anomaly that
is near the centroid of the data, but off of the main subspace.
To get a single measure, we take r = max(rg, Org), where
[ is chosen so that the different radii have the same scale. In
particular, we choose /3 so that the median of 7 g is equal to
the median of Org. In terms of 7, then we have the volume of
this hybrid as the product of the two components:

X =Xg +Xg

7T(al—k)/zlv[/|1/2 |ETE|1/2
T(1+(d—k)/2) &
See Fig. 3 and Fig. 4.

Viybrid = BRrd (14)

3. DISCUSSION

This paper presents two innovations. One is the use of an
“elastic” simplex for anomaly detection. It is observed that
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Fig. 4. Same as Fig. 3, except that a different simplex algo-
rithm is used (NFINDR [14] instead of Max-D [7]), which
leads to smaller volume simplices and ellipsoid-simplex hy-
brids.

for low-dimensional projections of hyperspectral data, e.g.,
as seen in Fig. 1(a,b), the simplex provides a more effective
shape than an ellipsoid for characterizing the tail of the data
distribution.

Since anomalies might be lost in the projection to lower
dimension, it is valuable to do anomaly detection in the full
dimensional space. But for higher-dimensional data, the el-
lipsoid outperforms the simplex, as seen in Fig. 1(c,d). This
leads to the second innovation, the hybrid ellipsoid-simplex
model. As seen in Fig. 3, and even more so in Fig. 4, this
hybrid produces the smallest-volume coverage of the data at
the lowest false alarm rates.

There is ample room for improvement, here. In addition
to optimizing the free parameters in this model (k and j3),
there are potentially better ways to choose the ellipsoid [9]
and simplex — e.g., see Fig. 4 — so as to optimize the volume
versus false alarm rate criterion.

Stepping back from these particular examples, a key
notion here is that the anomaly detection problem can be
expressed in terms of minimum volume shapes that enclose
most the data; and that these shapes can be adapted to the
data. In addition to providing better anomaly detection per-
formance, knowing the properties of shapes that are effective
will provide insight into the nature of hyperspectral data
distributions.
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